Lixue Cheng

Email Homepage GitHub Google Scholar

EDUCATION

California Institute of Technology	Pasadena, CA
Ph.D. in Chemistry, with Prof. Thomas F. Miller III. & Prof. Bill Goddard	Mar 2022
Thesis: Accurate and transferable molecular-orbital-based machine learning for molecular modeling [Link]	
University of Wisconsin-Madison	Madison, WI
Pachalar of Sciences in Honors, CDA: 2 022/4 0	May 2016

Bachelor of Sciences in Honors, GPA: 3.933/4.0 Majors: Chemistry (Honor), Mathematics (Honor), Biochemistry, Molecular Biology. Minor (Certificate): Computer Sciences

RESEARCH INTERESTS

Apply computational and mathematical tools to improve the chemistry and biology study strategies.

(1) AI for quantum chemistry (electronic structure)

- Deep Quantum Monte Carlo (DeepQMC)
- Molecular-orbital-based machine learning (MOB-ML, Miller group, Theme twitter thread) •
- TransOrb (In preparation, with Goddard group) ٠

(2) Quantum computing algorithms

- Quantum computing for quantum chemistry ٠
- Machine Learning for variational quantum algorithms

(3) AI for biology

- Molecular computing and nucleic acid design (INSPIRE, Miller group) •
- Bayesian optimization for experimental design (ODBO, Tencent Quantum Lab, Repo)

RESEARCH AND TEACHING EXPERIENCES

Microsoft Research AI4Science Lab (Berlin)

June 2023–Present

Researcher

AI for quantum chemistry: DeepQMC and MLFF

- Apply Transformer and other deep learning techniques to develop deep quantum Monte Carlo (DeepQMC) and machine learning force field (MLFF)
- Collect and generate highly accurate quantum simulation data as input data for deep learning model

May 2016

LLMs for Science: ability of GPT-4 in chemistry

- Assess the ability of GPT-4 in various scientific tasks, such as understanding theoretical chemistry, generating useful simulation inputs, and designing reasonable research plan, with different prompt engineering techniques.
- Participate in the preparation of foundation model for molecular sciences.

Tencent Quantum Lab, Tencent

Research scientist

Machine learning assisted quantum computing algorithm design for quantum chemistry

- Develop AI tools for quantum computing, quantum chemistry and biology
- Develop, implement and test novel Bayesian learning algorithm to optimize quantum computing algorithms running on real quantum devices.
- Design shallow and efficient quantum circuits for VQE to achieve chemical accuracy for molecular systems.

Miller Group, California Institute of Technology

PhD student

MOB-ML: Molecular Orbital-Based Machine Learning

• Use the molecular orbital representations to predict the molecular energies via ML tools to give high accuracy as wave function theory method but a low computational cost as density functional theory method.

- Perform electronic structure calculations and quantum simulations for different molecular systems.
- Develop different supervised and unsupervised learning methodologies to model different molecular properties.
- Develop a ML module in open-source quantum chemistry software (entos) and build a MOB-ML database.

TranOrb: Transferable Electronic Structure Learning via General Orbital Information (migrated to Goddard group)

INSPIRE: Computational Parameterization of Nucleic Acid Secondary Structure Models

• Combine ML tools with molecular dynamics (MD) to derive new thermodynamics and kinetics nucleic acid models with secondary structure information.

- Develop and revise ML algorithms that can improve the efficiency of the strategy.
- Perform MD simulations for different nucleic acid reaction systems as a source of data for ML model.

Record Group, University of Wisconsin-Madison

Undergraduate researcher

Interpreting and predicting Hofmeister salt ion, polyol, PEG and sugar effects on biopolymer processes using solubility assay and solute-partitioning model

• Design and lead projects using solubility experiments to measure different solutes-biomolecule interactions.

- Recruit and mentor other undergraduate students to collect solute-nucleobase thermodynamics data.
- Develop mathematical models and analyze the data to interpret functional group chemical interactions.

• Determine interaction constants between different bases and different solutes and apply them to predict and interpret solute-biopolymer interaction and drug solubility data.

Math studies supervised by Qin Li, University of Wisconsin-Madison

July 2022–April 2023

January 2013–July 2017

August 2017–Mar 2022

Undergraduate researcher

Randomized Singular Value Decomposition algorithm for low rank matrices & its numerical applications

- Reprove and improve the theorems in the literature as a mathematical exercise.
- Develop MATLAB codes to implement the algorithm studied in the literature and perform numerical tests.
- Compare and analyze the numerical test results and explain the mathematical origins in different cases.

Grader/TA for Chem/Biochem 565/665 Biophysical Chemistry

University of Wisconsin-Madison

Grader/TA for Math 341 Linear Algebra (Honor) and Math 561 Differential Geometry

University of Wisconsin-Madison

VOLUNTEERING & COMMUNITY EXPERIENCES

I'm an active volunteer & organizer for "<u>AI for science</u>" research community to bridge scientists from different backgrounds, a practitioner for "AI for science" education to cultivate the next generation talents, and a part-time open-source software developer to break the knowledge barrier in research.

AI for Science workshops

Volunteer & Organizer

- Help to organize the AI for science workshops
- Participate in the proposal and review report writing

AI for Science education for high school students

Instructor

• Introduce cutting-edge AI for science contents to high school students all over the world [Link][An example course page]

MathTranslate (over 900 stars) [GitHub][YouTube][Bilibili]

Core developer

• A core developer for this free open-source software to provide high quality translation of scientific papers with heavy math symbols.

• Maintain social media & user discussion groups.

Department of Mathematics, University of Wisconsin-Madison

Administrative Office and Front Desk Student Help

Sonoco Products Co., 455 Science Drive, Madison, WI

Research Project Assistant

- Measure geometries and properties of different materials and perform mathematical modeling of products.
- Analyzing data using various software, for example, Excel, Auto CAD, FEA.
- Develop test devices and search the literature to support our own research projects.

2016 Spring

2015 Fall & 2016 Fall

May 2023–Present

April 2023–Present

Jan 2021–Present

August 2015–May 2016

September 2014–January 2015

Department of Chemistry and Mathematics, University of Wisconsin–Madison

Private Tutor

College Library, University of Wisconsin-Madison

Circulation Student Assistant

Greater University Tutoring Service (GUTS), University of Wisconsin-Madison

Academic Tutor (Chemistry and Mathematics)

HONORS AND AWARDS

- 2017 Caltech General Fellowship, Division of Chemistry and Chemical Engineering, Caltech
- 2016 Mary Ellen Rudin Foundation Scholarship Award, Department of Mathematics, UW-Madison
- 2015 David H. Durra Scholarship, College of Letters & Sciences, UW-Madison
- 2015 Eugene and Patricia Kreger Herscher Undergraduate Scholarship for the 2015–16 Academic Year, Department of Chemistry, UW-Madison
- 2015 Walter W. & Young-Ja C. Toy Summer Research Fellowship, Department of Chemistry, UW-Madison
- 2014 Biochemistry Undergraduate Summer Research Scholarship, Department of Biochemistry, UW-Madison
- 2014 Gerald W. and Tui G. Hedstrom Scholarship, College of Letters & Science, UW-Madison
- 2014 Martha Gunhild Weeks Undergraduate Scholarship for the 2014-15 Academic Year, Department of Chemistry, UW-Madison
- 2014 The Honor Society of Phi Kappa Phi Member, University of Wisconsin-Madison Chapter
- 2014 Trewartha Senior Thesis Grant, Letters & Science Honors Program, UW-Madison
- 2014 Wisconsin Hilldale Undergraduate/Faculty Research Fellowship, UW-Madison
- 2013 John & Elizabeth Moore Awards for Excellence, Department of Chemistry, UW-Madison: Excellence for Chem109 Advanced General Chemxistry, 1/350

PATENTS, PUBLICATIONS AND THESES

Post-Caltech work

• Sun, J.; <u>Cheng, L</u>.; Zhang, S.X. Stabilizer ground state: Theory, algorithms and applications. arXiv: 2403.08441 (2024).[Link][Repo]

• <u>Cheng, L</u>.*; Chen, Y.Q.*; Zhang, S.X.; Zhang, S. Quantum approximate optimization via learning-based adaptive optimization. *Commun. Phys.*, **2024** (*co-first author) [Link] [Repo]

• Sun, J.; <u>Cheng, L</u>.; Li, W. Towards chemical accuracy with shallow quantum circuits: A Clifford-based Hamiltonian engineering approach. *J. Chem. Theory Comput.*, **2024**.[Link][Repo]

• MR AI4Science^{*}, MA Quantum. The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4. arXiv:2311.07361 (2023). [Link] (*Major contributor to Chap 4)

• Li, W.; Allcock, J.; <u>Cheng, L</u>.; Zhang, S.X.; Chen, Y.Q.; Mailoa, J.P.; Zhang, S. TenCirChem: An efficient quantum computational chemistry package for the NISQ era. *J. Chem. Theory Comput.*, **2023**. [Link][Repo]

• <u>Cheng, L</u>.; Yang, Z.; Liao, B.; Hsieh, C.; Zhang, S. ODBO: Bayesian Optimization with prescreening for directed protein evolution. arXiv:2205.09548 (2022). [Link][Repo]

• <u>Cheng, L.</u> et al. Operator-based machine learning for molecular modelling (in preparation)

Caltech work

• Patent: Miller III, T.F.; Welborn, M.; <u>Cheng, L</u>.; Husch, T.; Song, J.; Kovachiki, N.; Burov, D.; Teh, Y.S.; Anandkumar, A.; Ding, F.; Lee, S.J.R.; Qiao, Z.; Lale, A.S. Systems and methods for determining

August 2013–May 2015

September 2012–August 2013

August 2014–May 2017

molecular structures with molecular-orbital-based features. U.S. Patent 16817489, 2020 [Link]

• <u>Cheng, L</u>.; Sun, J.; Deustua, J. E.; Bhethanabotla, V.C; Miller III, T.F. Molecular-orbital-based machine learning for open-shell and multi-reference systems with kernel addition Gaussian process regression. *J. Chem. Phys.*, **2022**. [Link]

• Sun, J.; <u>Cheng, L</u>.; Miller III, T. F. Molecular dipole moment learning via rotationally equivariant Gaussian process regression with derivatives in molecular-orbital-based machine learning. *J. Chem. Phys.* **2022**. [Link]

• <u>Cheng, L</u>.; Sun, J.; Miller III, T.F. Accurate molecular-orbital-based machine learning energies via unsupervised clustering of chemical space. *J. Chem. Theory Comput.*, **2022.** [Link]

• Sun, J.; <u>Cheng, L</u>.; Miller III, T.F. Molecular energy learning using alternative blackbox matrix-matrix multiplication algorithm for exact Gaussian process. arXiv: 2109.09817 (2022). Appears in NeurIPS 2021 AI for Science Workshop [Link].

• Lu, F.*; <u>Cheng, L</u>.*; DiRisio, R. J.*; Finney, J. M.; Boyer, M. A.; Sun, J.; Lee, S. J. R.; Deustua, J. E.; Miller III, T. F.; McCoy, A. B. Fast near *ab initio* potential energy surfaces using machine learning. *J. Phys. Chem. A*, **2022.** (*co-first author) [Link]

• Husch, T.; Sun, J.; <u>Cheng, L.</u>; Lee, S. J. R.; Miller III, T.F. Improved accuracy and transferability of molecular- orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states. *J. Chem. Phys.*, **2021.** [Link]

• <u>Cheng, L.</u>; Kovachki, N; Welborn, M.; Miller III, T. F. Regression clustering for improved accuracy and training costs with molecular-orbital-based machine learning. *J. Chem. Theory Comput.*, **2019**. [Link]

<u>Cheng, L.</u>; Welborn, M.; Miller III, T. F. A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules. *J. Chem. Phys.*, **2019.** [Link]
Welborn, M.; <u>Cheng, L.</u>; Miller III, T. F. Transferability in machine learning for electronic structure via the molecular orbital basis. *J. Chem. Theory Comput.* **2018**. [Link] (Highlighted with commentary in <u>C&EN</u> and <u>Caltech News</u>)

UW-Madison work

• Knowles, D. B.; Shkel, I. A.; Phan, N. M.; Sternke, M.; Lingeman, E.; Cheng, X.; <u>Cheng, L.</u>; O'Connor, K.; Record, M. T. Chemical interactions of polyethylene glycols (PEGs) and glycerol with protein functional groups: Applications to effects of PEG and glycerol on protein processes. *Biochemistry* **2015**, *54* (22), 3528–3542. [Link]

• Undergraduate Senior Honor Thesis for Chemistry with Prof. M. Thomas Record: Interactions of polyols with aromatics and nucleobases: Large opposing contributions from interactions of nonpolar and polar groups

• Undergraduate Senior Honor Thesis for Mathematics with Prof. Qin Li: *Randomized singular value decomposition (RSVD) algorithm for low rank matrices and its numerical applications*